I B.Tech - I Semester – Supplementary Examinations - JULY 2024

LINEAR ALGEBRA & CALCULUS (Common for ALL BRANCHES)

Duration: 3 hours

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

1.a)	Find the value(s) of k such that the rank of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & k & 7 \\ 3 & 6 & 10 \end{bmatrix}$ is
	2.
1.b)	Find the first approximation to the solution of the following system of equations using Jacobi's method by taking initial approximation as zero
	5x + y + 2z = 19, x + 4y - 2z = -2, 2x + 3y + 8z = 39
1.c)	If the product of two eigen values of $A = \begin{bmatrix} 8 & -2 & 2 \\ 0 & 2 & -1 \\ 0 & 0 & 4 \end{bmatrix}$ is 16 then find the third eigen value.
1.d)	Write down the symmetric matrix of the quadratic form $x_1^2 + 3x_2^2 - 2x_3^2 + 2x_1x_2 - 6x_1x_3 - 4x_2x_3$
1.e)	Determine <i>c</i> value where $c \in (1, 2)$, for the functions <i>x</i> and x^2 defined in [1, 2] by using Cauchy's mean value theorem.
1.f)	Write the Taylor's series expansion of $f(x)$ about $x = x_0$

1.g)	Discuss the continuity of the function $f(x, y)$ at origin
	where $f(x, y) = \begin{cases} \frac{5xy}{x^2 - y^2}, (x, y) \neq (0, 0) \\ 0, (x, y) = (0, 0) \end{cases}$
1.h)	Find the first and second order partial derivatives of
	$f(x, y) = x^3 + y^3 - 3axy$
1.i)	Write the limits by changing the variables of the double
	integral $\int_0^\infty \int_0^\infty 1 dx dy$ to polar coordinates with the help
	of region of integration.
1.j)	Evaluate the double integral $\int_0^1 \int_0^2 x^2 y dy dx$

PART –]	B
----------	---

			Max.
			Marks
		UNIT-I	
2	a)	Reduce the matrix $A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$ into echelon form and hence find its rank.	5 M
	b)		5 1
	b)	Solve the system of non-homogeneous linear	5 M
		equations $x + y + z = 6$, $x + 2y + 3z = 14$, $x + 4y + 7z = 30$.	
	1	OR	
3	a)	Apply Gauss Jordan method to find the inverse of the matrix $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$	5 M
	b)	Use Gauss Seidel iteration method to solve the	5 M
		system of equations $10x + y + z = 12$, $2x + 10y + z = 13$, 2x + 2y + 10z = 14.	

		UNIT-II	
4	a)	Find Eigen values and corresponding Eigen vectors	5 M
		$\begin{bmatrix} 1 & 1 & 3 \end{bmatrix}$	
		of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$	
	b)	Make use of the eigen values of matrix of the	5 M
		quadratic form to discuss the rank and nature of the	
		quadratic form $2x_1^2 + 2x_2^2 + 3x_3^2 + 2x_1x_2 - 4x_1x_3 - 4x_2x_3$	
		OR	
5	a)		5 M
		Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$	
		and then find A^{-1}	
	b)	If the eigen values of a matrix A of order 3 and the	5 M
		corresponding eigen vectors are 1, 1, 3 &	
		$[1,0,-1]^T$, $[0,1,-1]^T$, $[1,1,0]^T$ respectively then find the	
		matrix A.	
		IINIT-III	
6	a)	Check the applicability of Rolle's theorem for the	5 M
		function $f(x) = \frac{\sin x}{e^x}$ in $\left[0, \frac{\pi}{2}\right]$, if applicable find C	
		C L 23	
	b)	value. Write the series encoding of $f(x) = \log(1+x)$ in	5 M
	0)	Write the series expansion of $f(x) = \log(1+x)$ in	J 1 VI
		powers of <i>x</i> . OR	
7	a)		5 M
	u)	$\frac{b-a}{\sqrt{1-a^2}} < \sin^{-1}b - \sin^{-1}a < \frac{b-a}{\sqrt{1-b^2}}, (0 < a < b).$	J 171
		Hence deduce that $\frac{\pi}{6} + \frac{1}{5\sqrt{3}} < \sin^{-1}\left(\frac{3}{5}\right) < \frac{\pi}{6} + \frac{1}{8}$	
	b)	Write series expansion of $f(x) = \tan^{-1} x$ in powers of	5 M
		x by applying suitable series expansion.	

		UNIT-IV	
8	a)	Make use of functional determinant to show	5 M
		$\frac{\partial(x,y)}{\partial(r,\theta)} \times \frac{\partial(r,\theta)}{\partial(x,y)} = 1$ where $x = r \cos \theta$, $y = r \sin \theta$	
	b)		5 M
		extreme values of	
		$f(x, y) = x^3 + y^3 - 63(x + y) + 12xy$	
		OR	
9	a)	If $U = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$, $x^2 + y^2 + z^2 \neq 0$, then prove that	5 M
		$\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2} = 0$	
	b)	A rectangular box which is open at the top, is to	5 M
		have volume 32 cubic ft. Find the dimensions of the	
		rectangular box requiring least material for its	
		construction.	
1		UNIT-V	
10	a)	UNIT-V By changing the order of integration, evaluate the	5 M
10	a)	By changing the order of integration, evaluate the double integral	5 M
10	a)	By changing the order of integration, evaluate the double integral	5 M
10	a) b)	By changing the order of integration, evaluate the	5 M 5 M
10	,	By changing the order of integration, evaluate the double integral $\int_{0}^{1} \int_{x^{2}}^{2-x} xy dy dx$	
10	,	By changing the order of integration, evaluate the double integral $\int_{0}^{1} \int_{x^{2}}^{2-x} xy dy dx$ Determine the volume of the solid bounded by the	
10	b)	By changing the order of integration, evaluate the double integral $\int_{0}^{1} \int_{x^{2}}^{2-x} xy dy dx$ Determine the volume of the solid bounded by the planes $x = 0, y = 0, x + y + z = 2$ and $z = 0$.	
	b)	By changing the order of integration, evaluate the double integral $\int_{0}^{1} \int_{x^{2}}^{2-x} xy \ dydx$ Determine the volume of the solid bounded by the planes $x = 0, y = 0, x + y + z = 2$ and $z = 0$. OR	5 M
	b)	By changing the order of integration, evaluate the double integral $\int_{0}^{1} \int_{x^{2}}^{2-x} xy dy dx$ Determine the volume of the solid bounded by the planes $x = 0, y = 0, x + y + z = 2$ and $z = 0$. OR Calculate the value of triple integral in cartesian	5 M
	b)	By changing the order of integration, evaluate the double integral $\int_{0}^{1} \int_{x^{2}}^{2-x} xy dy dx$ Determine the volume of the solid bounded by the planes $x = 0, y = 0, x + y + z = 2$ and $z = 0$. OR Calculate the value of triple integral in cartesian coordinates $\int_{0}^{1} \int_{1}^{2} \int_{2}^{3} (x^{2} + y^{2} + z^{2}) dz dy dx$ Find the area enclosed by the pair of curves	5 M
	b)	By changing the order of integration, evaluate the double integral $\int_{0}^{1} \int_{x^{2}}^{2-x} xy \ dy dx$ Determine the volume of the solid bounded by the planes $x = 0, y = 0, x + y + z = 2$ and $z = 0$. OR Calculate the value of triple integral in cartesian coordinates $\int_{0}^{1} \int_{1}^{2} \int_{2}^{3} (x^{2} + y^{2} + z^{2}) \ dz \ dy \ dx$	5 M 5 M